ШПАЛЫ ДЛЯ СКОРОСТНЫХ ЖЕЛЕЗНЫХ
ДОРОГ ИЗ ПОЛИМЕРБЕТОНА с.20

СТРОИТЕЛЬСТВО:
НОВЫЕ ТЕХНОЛОГИИ – НОВОЕ ОБОРУДОВАНИЕ

ВСЕРОССИЙСКИЙ ЕЖЕМЕСЯЧНЫЙ ОТРАСЛЕВОЙ ЖУРНАЛ

WWW.PANOR.RU

АРХИТЕКТУРНОЕ ОБРАЗОВАНИЕ
ИБУДУЩЕЕ ПРОФЕССИИ с.56

8/2019
СОБЫТИЯ И ФАКТЫ .. 4

ОТПОЛЕНИЕ

ДВИЖЕНИЕ В ВЕРХУ .. 8
До подвигающего преимущества крыши, коттеджных и централизованным отоплением нашей средней полосы значительно, однако именно этот вариант АИР обладает самыми большим потенциалом, являясь оптимальным решением и для нежилых коттеджных домов, и для проектных композиций.

ДОРОГИ
Соловченко И. П., Русаков С. В.
СТЕПЕНИ И УСТАНОВКИ ДЛЯ ИССЛЕДОВАНИЯ ВОЗДЕЙСТВИЯ ТРАНСПОРТНОГО ПОТОКА НА ДОРОЖНОЕ ПОКРЫТИЕ 11
В статье представлена разработанная авторами классификация оборудования для исследования эксплуатационных характеристик дорожных покрытий. В работе было проведено исследование с целью сравнения и выбора наиболее рационального оборудования для изучения воздействия транспортного потока на дорожное покрытие.

Физиков О. Б., Фютюмов А., Штейнбок А.
ШПАЛЫ ДЛЯ СКОРОСТНЫХ ЖЕЛЕЗНЫХ ДОРОГ ИЗ ПОЛИВИРБЕТОНА .. 20
Описано применение полиуретановых шпал на основе полиуретановой смеси с металлической композитной арматурой и методика изготовления таких шпал.

ФУНДАМЕНТЫ
Мусатов А. Р., Якубов С. Н.
МОНИТОРИНГ УСТОЙЧИВОСТИ ОБЪЕКТОВ ВБЛИЗИ ГЛУБОКОГО КОЛОВАНА .. 25
Инструментальная геотехническая мониторинг за устойчивостью существующих зданий, расположенных вблизи глубокого колодца, осуществляется с определения устойчивости объекта, в геотехнические условия. Показателем устойчивости является параметр, определяемый путем замера смещения здания и его величины.

Ливенюк А. А., Денисович В. В., Марчичев М. Б.
СХЕМА РАБОТЫ ПОД НАГРУЗКОЙ БУРОНАБИВНЫХ СВАЙ В ГЛИНИСТЫХ ГРУНТАХ .. 34
Рассмотрена схема бурования наклонной сваи, которая позволяет определить необходимое для ее работы количество рабочих в специализированной бригаде. Бригада работает по определенной методике, которая позволяет определить необходимое количество рабочих в специализированной бригаде. Бригада работает по определенной методике, которая позволяет определить необходимое количество рабочих в специализированной бригаде.

ПАТЕНТЫ И ИЗОБРЕТЕНИЯ
Молодцова В. Н.
ПРОФИЛЬ ДЛЯ МОНОЛИТНОГО СТРОИТЕЛЬСТВА СТЕН ОДНОВРЕМЕННО С ОБЛИЦОВКОЙ .. 41
Изобретение относится к области строительства, а именно к элементам строительных конструкций, и может быть использовано в качестве несущей опоры при монолитном строительстве зданий одновременно с облицовкой наружной и внутренней стен, при облицовке наперерез, стен канализ. Патент жилого дома, подвала, водопровода, метро.

Прохоров И. В., Казаков Ю. В.
СПОСОБ ОБЕСПЕЧЕНИЯ МОНТАЖА КРЫШКИ НА ПОСАДОЧНОМ МЕСТЕ УСТРОЙСТВА ДЛЯ КРЕПЛЕНИЯ ЭЛЕМЕНТОВ К ОСНОВАНИЮ И ГИЛЬЗА ЭТОГО УСТРОЙСТВА 45
Изобретение относится к строительству зданий и сооружений, в частности к креплению дополнительных элементов к конструкциям, и позволяет надежно фиксировать крышку на посадочном месте, одновременно обеспечивая герметизацию отверстий.
ПРИЧАЛНАЯ НАБЕРЕЖНАЯ ВЕРТИКАЛЬНОГО ТИПА

ЭКОНОМИКА
ЗАСТРОЙЩИКИ И ПОДПРЯМЧИКИ ЗАТЯГИВАЮТ ПОЙСА. РЕАЛЬНО ЛИ ОПТИМИЗИРОВАТЬ РАСХОДЫ НА СТРОИТЕЛЬСТВО МНОГОКВАРТИРНОГО ДОМА?

АРХИТЕКТУРА
Славина Т. А.
АРХИТЕКТУРНОЕ ОБРАЗОВАНИЕ И БУДУЩЕЕ ПРОФЕССИИ

СИСТЕМНЫЙ ПОДХОД КАК ИНСТРУМЕНТ НАУЧНОГО АНАЛИЗА ПРИ ИССЛЕДОВАНИИ, МОДЕЛИРОВАНИИ И ПРОГНОЗИРОВАНИИ ФОНТАНОВ КАК СИСТЕМ В ПРОСТРАНСТВЕ ГОРОДСКОЙ СРЕДЫ

ИНФОРМАЦИЯ О ПОДПИСКЕ

Отдел подписки
Тел./факс: 8 (495) 274-2222 (многоканальный)
E-mail: podpiska@panor.ru

Отдел рекламы
Тел. в Москве: 8 (495) 274-2222 (многоканальный)
E-mail: reklama@panor.ru

Подписано в печать 14.08.2019 г.
Отпечатано в типографии ООО «Виктор-Стиль», 107023, Москва, ул. Электрозаводская, д. 20, стр. 3
Установочный тираж 5100 экз.
Цена свободная.

Приглашаем авторов к сотрудничеству. Статьи, консультации и комментарии в журнале публикуются на безграничной основе.
РЕДАКЦИОННЫЙ СОВЕТ
научно-практического журнала
«СТРОИТЕЛЬСТВО: новые технологии — новое оборудование»

В редакционный совет журнала вошли ведущие ученые, общественные деятели, преподаватели вузов, опытные руководители предприятий и организаций, добившиеся высоких результатов в научной, общественной и производственной деятельности.

ПРЕДСЕДАТЕЛЬ
ГУСЕВ Борис Владимирович — президент Российской и Международной инженерных академий, чл.-корр. РАХ, заслуженный деятель науки РФ, лауреат государственных премий СССР и РФ, лауреат премии Правительства РФ, почётный строитель РФ, д-р техн. наук, профессор.

БАСИН Ефим Владимирович — председатель Комитета по предпринимательству в сфере строительства Торгово-промышленной палаты РФ, президент Межрегионального объединения строителей, Героя Социалистического Труда, заслуженный строитель РФ.

РЕДАКЦИОННЫЙ СОВЕТ:

МЕРЕНЦОВА Галина Степановна — заведующий кафедрой «Строительство автомобильных дорог и аэродромов», доктор технических наук, профессор, ФГБОУ ВО «Алтайский государственный технический университет им. И.И. Ползунова»

Естеемесов Заткала Айранбаевич — директор ГОО «Центральная испытательная лаборатория строительных материалов» (Республика Казахстан), д-р техн. наук, профессор.

МОЖАЕВ Евгений Евгеньевич — действительный член Нью-Йоркской академии наук, почётный работник науки и техники РФ, почётный работник высшего профессионального образования РФ, почётный доктор Европейского университета (Гамбург, Германия), д-р экон. наук, д-р юрид. наук, профессор.

Казаков Юрий Николаевич — ученый секретарь и советник Северо-Западного регионального отделения РАСХН, профессор кафедры «Технологии строительного производства» Санкт-Петербургского ГАСУ, международный эксперт-строитель, д-р техн. наук.

Мазур Василий Никитович — генеральный директор ЗАО «Трансахмас», почётный строитель РФ, заслуженный строитель Якутии.

Десятков Юрий Васильевич — генеральный директор ПФ «СРО "ССК Уралс"», возглавляет отраслевую комиссию по строительному комплексу Челябинского регионального объединения работодателей «ПРОМАС», член коллегии Министерства строительства, инфраструктуры и дорожного хозяйства Челябинской области.

Москаленко Кирилл Алексеевич — генеральный директор ИД «ПАНОРАМА». Крупнейший в России и странах СНГ Издательский Дом «ПАНОРАМА», в состав которого входят 12 отраслевых издательств, выпускает 97 деловых и научно-практических журналов.
СИСТЕМНЫЙ ПОДХОД КАК ИНСТРУМЕНТ НАУЧНОГО АНАЛИЗА ПРИ ИССЛЕДОВАНИИ, МОДЕЛИРОВАНИИ И ПРОГНОЗИРОВАНИИ ФОНТАНОВ КАК СИСТЕМ В ПРОСТРАНСТВЕ ГОРОДСКОЙ СРЕДЫ

О. Г. Церковная,
аспирант, кафедра градостроительства, факультет архитектуры, строительства и дизайна,
Национальный авиационный университет, г. Киев, Украина

В последнее десятилетие широкую популярность получило строительство фонтанов как элементов системы благоустройства населенного пункта. В исследовании применен системный подход, который позволил описать сооружения в контексте теории систем, выделить подсистемы разного уровня сложности (самостоятельные функции; материальную составляющую сооружения; функциональную зону взаимодействия сооружения с городской средой и потребителями; процессы, в которых участвуют объект (сооружение) и субъекты (потребители)). Проверка теории, положенной в основу исследования, на адекватность подтверждена ретроспективным анализом формирования сооружений в пространстве городской среды и указала на возможность применения системного подхода как инструмента научного анализа при исследовании, моделировании и прогнозировании систем данного класса.

Ключевые слова: фонтаны, системный подход, инструмент, ретроспективный анализ, система, благоустройство, населенный пункт, городская среда.
ВВЕДЕНИЕ

В последнее десятилетие широкую популярность получил строительство таких сооружений, как фонтаны. Фонтаны, согласно закону [1], являются элементами системы благоустройства населенного пункта. Также, согласно закону [1], фонтан как объект монументального искусства, памятник культурного и/или исторического наследия является объектом благоустройства. Пользование указан-ным объектом является важным для страны. Увеличение количества таких объектов умо-жает национальное богатство.

Сравнительный анализ действующих в Украине нормативно-законодательных актов градостроительного направления, графоаналитический анализ сооружений от их зарождения до сегодняшнего дня, а также проведенные теоретические исследования [2–5] позволили выделить основную концепцию сооружений как элементов системы благоустройства — обеспечение экологического оздоровления (восстановления) городской среды. И обозначить основные задачи, выполнение которых первоочередно:

— формирование микроклимата;
— повышение комфортности;
— адаптация к негативным проявлением изменений климата.

Выполнение вышеперечисленных задач способствует увеличению продолжительности использования открытых территорий населенного пункта, предназначенных для различного вида социальной, рекреационной и коммуникационной деятельности потребителей, обеспечивающих ключевые аспекты устойчивого развития — экологические, экономические и социальные. Также проведенные исследования показали: выполнение вышеперечисленных задач сооружения осуществляют в период эксплуатации, в зависимости от режима работы.

Функциональное насыщение сооружений создает основой природный элемент, наличие которого является обязательным. Вода и её движение формирует как само сооружение, так и функциональную зону взаимодействия сооружения с городской средой и потребителями.

Знание таких физических свойств воды, как испаряемость, теплоемкость, растворительность (вода как растворитель), акустичность, отражаемость и др., позволяет управлять гидро-

физическими процессами, действие которых направлено на экологическое оздоровление (рекреацию) городской среды:

— пассивное охлаждение (понижение тепловой нагрузки) открытых территорий населенного пункта как результат процессов тепло- и массообмена свободной водной поверхности с атмосферным воздухом;

— снижение уровня загрязнения воздушного бассейна, результат двух параллельных процессов:
• первый — абсорбция, происходит в результате растворения смеси газов в воде. При содержании газов в воде меньше, чем в атмосфере, происходит их поглощение из атмосферы;
• второй — гидрообепыпление, происходит в результате увлажнения пыльцевой поверхности.

— обеспечение качества используемой воды в сооружении согласно действующим санитарно-гигиеническим нормам (водоудушения или «кондиционирование» воды), как результат процесса «изъятия» из воды веществ, концентрация которых нарушает предельно допустимые нормы.

— улучшение качества звучания акустического фона открытых территорий городской среды — акустический эффект или процесс, который происходит в результате акустических колебаний, генерируемых движущимися водными потоками в период эксплуатации сооружения.

Вышеизложенное не могло не привести к выводу, что требуется поиск новых инновационных приемов и методов исследования фонтанов в городской среде. Процесс формирования фонтанов как многофункциональных сооружений, элементов системы благоустройства населенного пункта может быть подробно описан в контексте теории систем.

Суть системного подхода достаточно проста и раскрывается в работе Дж. Брайана Маклафлинна «Градостроительство и планирование пространства. Системный подход» [6]: любой объект понимается как единная система — комплексное целое, набор взаимосвязанных элементов и/или частей организованной совокупности материальных и нематериальных вещей, связанных или взаимодействующих между собой, чтобы сформировать единое целое. Все элементы системы и все происходящие процессы в системе рассматриваются только как единое целое, только в совокупности, только во взаимосвязи друг с другом [7, 10, 11].
ФОНТАНЫ КАК САМОСТОЯТЕЛЬНЫЕ СИСТЕМЫ В ПРОСТРАНСТВЕ ГОРОДСКОЙ СРЕДЫ
Системный подход как инструмент научного познания сооружений

Базируясь на исследованиях в области градостроительства [6, 8, 9] и архитектуры [7, 10–12], основанных на методологических положениях общей теории систем, выделям сооружения как самостоятельные системы в пространстве городской среды, руководствуясь принципами системного подхода.

Фонтан (рис. 1) — это открытая (с точки зрения характера связей) градостроительная система [6, 8, 9, 13]. По рангу фонтан как система является первичной подсистемой или элементом системы более высокого градостроительного уровня — «благоустройство населенного пункта». Фонтан как система выполняет относительно независимые самостоятельные функции [7, 2–5]: пассивное охлаждение (понижение тепловой нагрузки) открытых территорий населенного пункта; снижение уровня загрязнения воздушного бассейна; обеспечение качества используемой воды в сооружении согласно действующим санитарно-гигиеническим нормам; улучшение качества акустического фона открытых территорий населенного пункта.

Основные задачи системы (формирование микроклимата; повышение комфортности; адаптация к негативным проявлениям изменений климата) взаимосвязаны и направлены на достижение глобальной цели [7–11]: увеличение продолжительности использования открытых территорий населенного пункта, предназначенных для различного вида социальной, рекреационной и коммуникационной деятельности потребителей. Внутренняя целостность градостроительной системы обусловлена устойчивостью социально-функциональных связей.

Основываясь на системном подходе, условно выделим подсистемы разного уровня сложности [10, 11, 13]:
— независимые самостоятельные функции, которые выполняет сооружение в период эксплуатации;
— материальная составляющая сооружения;
— среда, созданная сооружением, или функциональная зона взаимодействия сооружения с городской средой и потребителями;

— процессы, в которых участвуют объект (сооружение) и субъекты (попробители).

Изменение одной из названных подсистем приведет к нарушению упорядоченности остальных, потери старых и возникновению новых связей системы в целом.

При условии, что полученные теоретические результаты достаточно близки критериям существующих или существовавших ранее моделей систем, то теория, положенная в основу, работоспособна, а модель может быть применена как инструмент научного анализа при исследовании, моделировании и прогнозировании систем данного класса. Проверка исследуемой (моделируемой) системы на адекватность возможна лишь способом ретроспективного анализа [12, с. 49].

ЭТАПЫ ФОРМИРОВАНИЯ СИСТЕМЫ ЧЕРЕЗ ПРИЗМУ РЕТРОСПЕКТИВНОГО АНАЛИЗА
Ретроспективный анализ формирования сооружений в пространстве городской среды на примере стран Европы с климатическими условиями аналогичными Украине с учетом филателевского мировоззрения всемирной истории технологий водоснабжения, санитарии, сточных вод и ливневых вод позволил выделить «адаптивность» фонтов как систем — то есть способность трансформироваться в соответствии с изменениями во внешней среде и установить шесть основных этапов формирования сооружений (трансформации систем) (рис. 2):
1. Заражение, приближенное с XIX–XX вв. до н.э.
2. Развитие, 1 в. до н.э. — IV в. н.э.
3. Упадок, V–IV вв.
4. Распространение, XV–XX вв.
5. Технологизация, XX–XXI вв.
6. Специализация, XXI в.

Определены основные функции сооружений или комплекс материально-практических задач, которые выполняют фонтаны в период эксплуатации [14], прослежена трансформация функций и материальной составляющей сооружения в соответствии с изменениями во внешней городской среде и развитием общества. Функциональный анализ фонтанов в городской среде, свидетельствует о том, что сооружения формируют разные типы пространства — функциональную зону взаимодействия сооружения с городской средой и потребителями [15].
СИСТЕМА БЛАГОУСТРОЙСТВА НАСЕЛЕНИГО ПУНКТА

Фонтан как многофункциональное сооружение, элемент системы благоустройства населенного пункта

УЛУЧШЕНИЕ МИКРОКЛИМАТА
ПОВЫШЕНИЕ КОМФОРТНОСТИ
АДАПТАЦИЯ К ПОСЛЕДСТВИЯМ ИЗМЕНЕНИЯ КЛИМАТА

Основная концепция: экологическое оздоровление (восстановление) городской среды

Границы действия: открытые территории населенного пункта, предназначенные для различного вида социальной, рекреационной и коммуникационной деятельности потребителей

Цель: увеличение продолжительности использования открытых территорий

Снижение уровня загрязнения воздушного бассейна
Пассивное охлаждение (понижение тепловой нагрузки)

Фонтан, Театральная пл., г. Одесса, Украина
Музыкальный фонтан, парк им. М. Горького, г. Мелитополь, Украина

Фонтан, Южный парк, г. София, Болгария
Фонтан, Лучший парк "Неми", пляж Ланкирн, 25 г. Одесса, Украина

Улучшение качества звучания акустического фона
Повышение качества используемой воды

Рис. 1. Формирование фонтанов как элементов системы благоустройства населенного пункта
Рис. 2. Основные этапы формирования сооружений
Анализ процессов, которые протекают в результате взаимодействия сооружений с внешней средой и потребителями, показал возможность их нормирования ещё до начала исследования.

СТРУКТУРА СООРУЖЕНИЙ КАК СИСТЕМ

Руководствуясь результатами ретроспективного анализа формирования сооружений, охарактеризуем подсистемы, которые обеспечивают устойчивость развития систем в соответствии с изменениями во внешней среде и развитием общества (социально-функциональные связи).

Материальная составляющая системы — это сооружение (объект) или искусственно созданная целостная совокупность природных и материально-технических элементов (конструктивное объединение строительного каркаса) с освоенной территорией и инженерными сетями, по форме обособленное, что определяет общую композицию объекта. Сооружение имеет собственную классификацию (типоологию) и художественно-эстетическую целостность [7, 13, 15], свободно обменивается энергией и информацией с окружающей средой и потребителями. Природные и материально-технические элементы системы имеют внутренние взаимосвязи, благодаря чему представляют единый функциональный объект и формируют среду, в рамках которой реализуется комплекс основных видов социальной, рекреационной и коммуникационной активности (деятельности) потребителей.

Основные конструктивные элементы являются составляющими ядра системы и формируют материальную оболочку [13]. Существующие подходы к проектированию фонтанов весьма разнообразны и в первую очередь различаются с позиции долгодолечности и срока эксплуатации. На основании закона Украины «О регулировании градостроительной деятельности» [15] и ретроспективного анализа формирования сооружений (рис. 2) фонтаны как объекты строительства можно разделить по критериям на:

1. Объект капитального строительства — сооружение строится на длительный срок, как правило, беспрец. Пример строительства:
 — Сооружение как распределители воды для отдельной группы населения или для отдельных субъектов водопользования в нецентрализованной (локальной или местной) системе водоснабжения, с целью выполнения ритуальных обрядов и/или удовлетворения физических потребностей в воде, сформированы на первом этапе «зарождения» систем, строились на беспрец. срок. На этапе «развития» систем сооружения стали элементами централизованной системы водоснабжения населенного пункта и строились на длительный срок эксплуатации. Строились сооружения на длительный срок эксплуатации и на этапе «упадка» систем как распределители воды у ограниченной группы населения в нецентрализованной (локальной или местной) системе водоснабжения с целью удовлетворения духовных и физических потребностей в воде. Трансформировав часть основных функций, системы получили «распространение» для демонстрации власти и богатства. Сооружения создают как произведения искусства на беспрец. срок, используя как средство массовой информации для распространения одного и того же сообщения одновременно большому количеству потребителей через отражение исторических и культурных традиций сообщества.
 — Сооружения для выравнивания давления (снижения рисков гидравлического удара) в конце ветви тупиковой водопроводной сети, централизованной системы водоснабжения. Сформированы как системы на этапе «развития», а на этапе «распространения» — трансформировав часть функций и материальную оболочку, стали объектом искусства и/или средством массовой информации для распространения одного и того же сообщения одновременно большому количеству потребителей через отражение исторических и культурных традиций сообщества.
 — Парковые сооружения, появились на этапе «распространения» систем как объекты искусства для ограниченной группы населения с целью удовлетворения эстетических потребностей. Для демонстрации власти и богатства, сооружения строились на беспрец. срок.
 Фактически все сохранившиеся сооружения со временем или в силу обстоятельств были признаны памятником культурного и/или исторического наследия, основные функции сооружений прошли очередной этап трансформации [14].
 2. Временное сооружение на ограниченный срок — сооружение строится на ограниченный срок из легких конструкций, быстро монтируется и перемещается в пространстве. Примеры строительства:
— Парковые сооружения (малые архитектурные формы) как объекты искусств для удовлетворения эстетических потребностей населения через отражение исторических и культурных традиций сообщества, получают широкое распространение на этапе «технологизация» систем. Сооружения изготавливают из легких конструкций, что существенно уменьшает срок эксплуатации.

— Зрелищные сооружения для удовлетворения культурных и эстетических потребностей населения, формирующиеся на этапе «технологизации» систем, строятся на ограниченный срок из легких конструкций, быстро монтируются и перемещаются в пространстве.

Появление новых технологий обеспечивает сооружениям определенную степень свободы при выборе источника водообеспечения. Появляются новые концепции при формировании систем. Изготовление сооружений из легких конструкций на ограниченный срок способствует постоянному развитию и совершенствованию (обновлению) систем, возможности соответствовать меняющейся внешней среде и потребностям общества.

3. Временная постройка в силу ряда факторов ставшая постоянной — сооружение признанное памятником культурного или исторического наследия. Пример строительства:

— Сооружения, которые были сформированы как распределители воды в системе водоснабжения на первом этапе «технологизации» систем, сохранились, со временем или в силу обстоятельств, были признаны памятником культурного или исторического наследия [14]. Сооружения были модернизированы согласно современным техническим требованиям, как системы прошли этап «специализации» и трансформировались в элементы системы благоустройства населенного пункта, сменив градостроительную ситуацию в плане размещения.

Современные многофункциональные сооружения проходят как системы этап «специализации» и должны формироваться, соответствуя программе устойчивого развития.

Для реализации программы устойчивого развития системы слоя подсистемы необходимо рассматривать с позиций того, какие из элементов системы менее долговечны или требуют постоянного обновления, имеют ли определенную степень свободы и автономности при функционировании системы в целом. Каждый из слоев должен иметь возможность функционировать самостоятельно, не нарушая целостности всей системы. Это дает возможность корректировать, дорабатывать или уменьшать каждый из слоев в процессе функционирования системы [13].

Первый слой материальной составляющей системы — строительный каркас (ядро системы), состав ядра (элементы строительного каркаса) может изменяться в зависимости от конструктивных особенностей сооружения. К техническому оснащению (второй слой материальной составляющей системы) следует относить инженерные системы водообеспечения и водоотведения, освещения, водораспределительную и водосборную сеть, сеть Интернет и т.д. Второй слой подсистемы должен иметь возможность пространственного перемещения и трансформаций в зависимости от сменности в технологиях, при этом строительный каркас не должен страдать.

Пространство (среда) созданного сооружением как самостоятельной системой в городской среде (рис. 3) или функциональная зона взаимодействия сооружения (объекта) с городской средой и субъектами — это сложная подсистема, результат взаимодействия второй подсистемы с окружающим пространством, предназначенная для выполнения процессов различного вида социальной, рекреационной и коммуникационной деятельности потребителей (субъектов) [13]. Функциональные зоны, созданные сооружениями, стимулируют субъектов к индивидуальной или групповой деятельности; обмен энергии и информации субъектов с окружающим пространством, самим объектом; способствуют спонтанному взаимодействию субъектов, активному или пассивному отдыху.

Правильное понимание составляющих этой подсистемы дает возможность понимания процессов взаимодействия объекта и субъекта. Например, если фонтан расположен в городском парке (объект ландшафтной архитектуры); бассейн фонтана отождествляется с естественным водоемом; внутреннее пространство сооружения дистанционно для потребителя, то есть не предполагает то или иное взаимодействие субъекта с водной средой — такой фонтан способствует пассивному отдыху, обмену энергии.
и информации объекта с субъектами. И наобо-
рот, если фонтан расположен на площади (ди-
намические фонтаны без водосборных чаш),
внутреннее пространство контактное, то есть
предполагает взаимодействие потребителя с
водой — такой фонтан стимулирует спонтан-
ное взаимодействие субъектов, предполагает
и активный, и пассивный отдых потребителей
(субъектов). При определенной градострои-
тельной ситуации гидрофизические процессы,
которые происходят в момент эксплуатации со-
оружения, могут быть не поставлены по ряду
причин. Например, уровень гидравлического
шума, который генерируют водные потоки в пе-
риод эксплуатации сооружения, выше требуе-
мого расчетного значения [5], то есть фонтан как
система усиливает негативное фоновое звучан-
ие городской среды. Изолируем пространство
созданное сооружением. Нейтрализуют акустиче-
ские качества системы, усиливают звучковый
эстетический восприятие объекта, что, в свою
очередь, будет стимулировать субъектов к со-
зерцательной деятельности и пассивному отды-
ху. Подход к проектированию пространств раз-
личного назначения должен быть разным.

Четвертая составляющая система — это
подсистема процессов, происходящих в про-
странстве. Это в целом наиболее подвижная
и подвижен изменения подсистема. В отличие от материальной подсистемы подсистема
процессов субъективная, спонтанная и менее
предсказуемая. Процессы подвижные, участни-
ки процессов находятся в постоянной ротации,
требования к совершенствованию процессов растут значительно быстрее, чем происходит
обновление системы. Все процессы, происходя-
щие между объектом и субъектом, также условно
можно разделить на две группы — постоян-
ные и переменные (спонтанные или переменные).
К «постоянным» относятся все жизненно важные
процессы, связанные с физиологическими ха-
рактеристиками субъекта и характеристиками
окружающей городской среды [13].

Система должна быть адаптивная, и это тре-
бование необходимо закладывать в проектном
решении. Для этого, разделив процессы на слои,
следует выделить постоянные слои процессов,
оставляя определенную степень свободы для
слоев непостоянных, развивающихся спонтан-
но. К постоянным слоям процессов следует от-
нести физические и физиологические потреб-
ности участников процесса. Слои стимулируют
субъектов к различным видам социальной, ре-
креационной и коммуникативной деятель-
ности в среде или функциональной зоне, соз-
данной системой в результате взаимодействий
объекта и окружающей городской среды.

Систему взаимодействий составляют по-
требности субъектов в свежем воздухе и по-
требности в воде, следовательно, потребности:
к микроклиматическим показателям атмосфер-
ного воздуха (температура, влажность, концен-
трация загрязнения); к качеству воды, которая
используется в сооружении; к природному
звуку, гидравлическому шуму, который генери-
руют движущиеся потоки воды в период эксплу-
атации сооружения; к свободному передви-
жению в пространстве; в получении энергии
(удовольствия) от активной, пассивной, группо-
вой и/или индивидуальной деятельности. Эти
физиологические и физические потребности
субъектов постоянные, зафиксированы санитар-
ными нормами и должны быть реализованы в
проекте сооружений.

Анализ сооружений позволяет выделить
группы пространств по признакам и объединить
по однородности процессов. Чем более функ-
ционально насыщено пространство, тем более
эффективно использование объекта и обеспе-
чение устойчивости развития системы в целом.

Также при проектировании и строительстве
фонтанов следует учитывать следующие состави-
ляющие [13]:

- рациональное использование водных
ресурсов;
- соответствие стандартам экологичности и
энергоэффективности сегодняшнего и бли-
жайшего будущего, возможность замены мо-
рально устаревшего оборудования;
- экологичность материалов и строительных
технологий;
- эстетичность и художественную вырази-
тельность объекта в целом.

ВЫВОДЫ

Полученные теоретические результаты ис-
следования фонтанов как систем близки суще-
ствовавшим и существующим ранее моделям
(объектам), то есть теория,ложенная в осно-
ву, работоспособна.
Проверка теории, положенной в основу исследования, на адекватность подтверждена ретроспективным анализом формирования сооружений в пространстве городской среды и указала на возможность применения системного подхода как инструмента научного анализа при исследовании, моделировании и прогнозировании систем данного класса.

Системный подход как инструмент научного анализа применим и для устранения морального старения уже существующих сооружений, которые требуют модификации в соответствии с изменениями во внешней среде для обеспечения программы устойчивого развития.

Также проведенное исследование сооружений в контексте теории систем, позволяет сделать выводы: фонтаны как элементы системы...
Благоустройство городской среды улучшает качество жизни и качество окружающей среды, что неразрывно связано с устойчивостью их социально-функциональных связей.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК
10. Бабич В.Н., Витюк Е.Ю. К вопросу формирования системного подхода при ведении исследований в архитектуре в рамках постнеоклассической парадигмы // Вестник Томского государственного университета. Культурология и искусствоведение. — 2016. — № 3 (23).

Подписка—2019

www.panor.ru

ИЗДАТЕЛЬСКИЙ ДОМ «ПОРАНОМА»

Подробнее в журнале смотрите на сайте http://panor.ru или www.panor.ru

Тел. редакции (495) 274-2212
Информация о подписке

Знак качества в периодике

Свыше 20 лет мы издаем для вас журналы. Более 85 деловых, научных и познавательных журналов 10 издательств крупнейшего в России Издательского Дома «ПАНОРАМА» читают во всем мире более 1 миллиона человек.

Вместе с вами мы делаем наши журналы лучше и предлагаем удобные вам варианты оформления подписки на журналы Издательского Дома «ПАНОРАМА».

Писка на журналы ИД «ПАНОРАМА», в том числе на журнал «Строительство: Новые технологии – новое оборудование», на II полугодие 2019 года

1. Подписка на почте

— По «Каталогу российской прессы» (индекс 16611).
— По каталогу Агентства «Роспечать» «Газеты. Журналы» (индекс 82769).
— По «Объединенному каталогу “Пресса России”» (индекс 82769).
— По официальному каталогу Почты России «Подписные издания» (индекс П7252). Подписные цены во всех каталогах одинаковы. Доставка осуществляется «Почта России».

2. Подписка через агентство «Урал-Пресс»

3. Подписка через редакцию

Для оформления подписки позвоните по тел. 8 (495) 274-2222 (многоканальный) или отправьте заявку в произвольной форме на адрес: podpiska@panor.ru

В заявке укажите название журнала, на который вы хотите оформить подпись, наименование вашей компании и банковские реквизиты, Ф.И.О. получателя, телефон и e-mail для связи.

Вас интересует международная подписка, прямая доставка в офис по Москве или оплата кредитной картой? Просто позвоните по указанному выше телефону или отправите e-mail по адресу podpiska@panor.ru.

4. Подписка на сайте

Подпишитесь в пару кликов на нашем сайте www.panor.ru.

Мы принимаем практически любой способ оплаты: с р/счета, через квитанцию Сбербанка, пластиковой картой и т.д.

Выписывайте, читайте, примеянайте!

В стоимость редакционной подписки уже включены затраты по обработке, упаковке и отправке выписанных журналов, что делает подписку через редакцию особенно выгодной!

Подробная информация о подписке:
Тел.: 8 (495) 274-2222 (многоканальный)
e-mail: podpiska@panor.ru; www.panor.ru